Lab-on-a-Chip Systems

Chemical Detection
Description forthcoming . . .
Continuous Flow PCR
We work on the optimization of a microfluidic device for continuous flow polymerase chain reaction (PCR). PCR is the process by which copies of DNA are produced for analysis in a variety of lab applications including testing for disease, analyzing cancer, and other biological studies. PCR protocols currently take about one hour, however much faster systems have recently been theorized and developed. Our work aims to provide a device ready for commercialization that could perform PCR in less than five minutes. This type of device will not only reflect significant time savings, but will also be a significant contribution to point-of-care diagnosis and many other medical products. The project is done in collaboration with the Wittwer Lab and Andrology Clinic at the University of Utah.
Digital PCR
Description forthcoming . . .
DNA/RNA Extraction
Description forthcoming . . .
Sperm Separations
  • Understanding the Bio-particle Behavior in Spiral Channels: The ultimate goal of this project is to unravel the physics of cell/sperm sorting in a device with spiral channels and understand how some bio-particles order themselves in the device. Sperm separation is a fundamental process for in-vitro fertilization (IVF) using sperm from testicular biopsies. For sperm preparation to start, we need to segregate sperm from unwanted particles (RBC, WBC, etc.) using inertial focusing technique. The mechanism by which sperm focuses is not known completely. Sperm cells show remarkably different focusing behavior compared to other cells (Ellipsoid, Cylinder, Red Blood cell, etc.). This phenomenon has fascinated our interests as researchers, raising questions like: How and why do various particle shapes find their equilibrium position and where does this difference come from? We have chosen spiral channels over other designs because of the property of curved channels to create an additional secondary flow effect known as Dean vortices. The dean vortices accelerate and modify particles’ inertial migration process for better cells focusing. By carrying out particle simulations that mimics the behavior of a living cell in the device coupled with experimental analysis, we (Brady Goenner and I) aim to elucidate physics principles governing sperm focusing to understand asymmetrical particle focusing behavior in the spiral channel.

    Particle sorting in a Straight Channel vs Spiral Channel [Sorting algal cells by morphology in spiral microchannels using inertial microfluidics, Allison Schaap, et al (2016)]

  • Automated Device for Sperm Purification: NSF funded microfluidics project. The work involves building and developing rapid, highly automated, and controllable instrumentation which will be capable of isolation and enrichment of Sperm cells from patients with low sperm counts for in-vitro fertilization (IVF). We aim for our system to both increase pregnancy rates of infertile couples and provide separations faster than anything that is currently available on the market. The project is done in collaboration with the Andrology Clinic at the University of Utah and with the Salt Lake-based startup company NanoNC.

Zebra Fish Genotyping
Professor Bruce Gale, his post doc, Raheel Samuel, and Ph.D. student Chris Lambert, in collaboration with the University of Utah’s medical school, have developed a microfluidic system that enables high throughput, non-destructive genotyping of live zebrafish embryos by making it possible to collect DNA samples from these tiny animals at an early stage. It may come as a surprise, but the common aquarium zebrafish (Danio rerio) is extensively used by biomedical researchers as a model organism for determination of genetic and biochemical pathways, identification of basic biological activity, and drug discovery. Their DNA collection system works by gently extracting genetic material from live zebrafish embryos (less than one mm in size) before they are 72 hours old. The genetic material from the embryo can then be characterized using a variety of DNA analysis tools. This system enables a single user to perform 96 DNA extractions from individual embryos without harming the embryo and within 30 minutes. That’s 95 percent faster than current methods. The technology has recently been licensed to a spinout company from the University of Utah, wFluidx, that is already finding great success in selling the systems.